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OPERATING CHARACTERISTICS FOR CLIPPING OF IN-PHASE
AND QUADRATURE COMPONENTS OF INPUT AND/OR

REFERENCE OF NARROWBAND CORRELATOR

INTRODUCTION

To minimize the amount of data processing, telemetry bandwidth, execution
time, and storage, hard clipping is frequently employed in signal processing
hardware. In particular, for cross-correlation of a received input waveform
with a local reference, several alternatives exist for inclusion of clipping.
Either the input or the reference or both could be clipped. For a narrowband
system, where the input is complex demodulated, the further opt{on of
employing ¢lipping in both the in-phase and quadrature channels, of the input

as well as reference, is available.

Here we will investigate all the various possibilities of including

clipping at the input and/or reference level, for both baseband (real) and

K
narrowband (complex) signal processing systems. In this manner, we will -
{ J
ascertain whether inclusion of the additional) clippers in the quadrature i
channels ameliorates the degradation associated with the usual case of a };a

single clipper operating on one real input process.
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For completeness, we will present the analysis and simulation for both
the baseband correlator as well as the narrowband correlator. This will serve
as verification of the analysis technique and afford a ready comparison of

both types of correlators.

No definitions of output signal-to-noise ratio criteria are employed
here. Rather, we evaluate the system output detection probability PD and
false alarm probability PF in terms of the input signal-to-noise ratio,
which is a well defined quantity. We can then make a direct comparison

between systems, of the required input signal-to-noise ratios, in order to

achieve some specified common performance level pD'PF'
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PROBABILITIES FOR LINEAR-INPUT CHANNEL

In this subsection, we presume that the nonlinearity g in the input
channel of figure 1 is absent; that is, from (2) and (3), vk = xk. The
output of the correlator is then, for signal present,

7 = 2 wkvk = 2 wkxk = 2 wk(sk + nk) , (5)
k k k

where %? denotes the sum from k=1 to K. It is important to observe that
signal waveform {sk} and reference {wk} are completely general at this
point. That is, we have not restricted consideration to the examples of (4)

yet.

Since process {ng} is Gaussian, the random variable z in (5) is also

Gaussian. It has mean and variance
_ 2 _ 2 2
M= S WS . o=k Sub . (6)
k k

(The latter relation also holds true when the signal is absent.) The

detection probability is then, for threshold T,

pd 2
S~ du (u-m) T
Py = Prob(z > T1) - mexp -—202— =@d—; . (7)
T z z
where normal probability integral
x X
d(x) - gdt (2m) /2 exp<-t2/2\,g 3’ dt 8(t) (8)
- 00 ’ [e o3
5
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and deflection parameter

z
— = . (9)
o 2 172

z o <§ wk>

The false alarm probability is obtained by setting the signal {sk}

equal to zero in (9) and (7):

Pe = Q(-T/s,) . (10)

Combining (7) and (10), we have the exact performance (receiver operating)

characteristics in the compact form

Py = & +§(PF)) , (1)

~

where @ is the inverse function to § of (8). Thus, the single parameter d in
{9) and (11) is a complete descriptor of performance for a linear input

channe) in figure 1. Furthermore, {sk} and {wk} are completely general in

(9). Observe that the absolute scale of the reference cancels out in (9).

Matched Reference

If the local reference is matched to the received signal, then

wk = Ask as in (4), and (9) yields the matched deflection parameter value

1/2 1/2
e 2 _f
9~ o <Z Sk) = (12)

n K n

h
)
“y
i
D)

................
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where £ is the received signal energy. Furthermore, this is the maximum
possible value of d in (9) by choice of local reference {wk}. Thus, the
optimum performance of the linear-input correlator depends on the total

received signal energy, and not on its fractionalization into individual

samples {sk].

Clipped Reference

For this case, (4) yields w, = A sgn(sk), and (9) specializes to value

k

1/2 E sl - (13)

This quantity depends on the specific fractionalization of the received signal

energy into components {sk} and is, therefore, example-dependent. Its

maximum value is again E]/%/;n as in (12), but only if all components are

equal in magnitude. We will consider two particular signal examples in the

rest of this section on the baseband correlator.

EXAMPLES

Example 1, Cosine Wave:

Sk = a cos ﬂk' Bk = 2vk/K for 1 <k <K ; a>0. (14)

------
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For these two examples, the values of the matched deflection parameter in

(12) become, respectively,

2 o

172
(M) _ [k a_ (2) _ (1/2 a_
dp'’ = ( ) - d ' =K o - (16)

On the other hand, for a clipped reference, (13) yields corresponding values

it

7.201 a/a,  for K 128

K
gt - -1 ;Zi |cos(2mk/)| - = N
K S °n [1.707 a/e  for K

4
[o <]

(2) _ 1/2 a_
dr = K o for all K . (17

Since d is a complete descriptor of performance for the linear-input
correlator, as given in (11), it is seen that for the cosine signal example 1, ;

the clipped reference requires

dﬁ‘) 220 1og(7.201/8)
d;]) ~ 1-20 10g(1.707/2)

.91 dB for K

128
(18)

1.38 d8 for K

0
[= o]

additional input signal-to-noise ratio relative to the matched reference. On
- the other hand, constant signal example 2 requires a 0 dB difference, as seen

by reference to (16) and (17). In general, (12) and (13) reveal a d8

L)

- 5

difference, due to clipping the reference, of

pE

e, IIu)
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PROBABILITIES FOR NONLINEAR INPUT CHANNEL

Here, the nonlinearity g in the input channel of figure 1 is present;

that is, Ve = g(xk) as in (3). Not yet specializing to the clipper of

(2), we have system output
z Z"’k"k = > ) = D e als + ) (20)
k k k

where signal {sg} and reference {wk} are also general.

The exact evaluation of the distribution of random variable z in (20) is
difficult; accordingly we 1imit consideration to the case where K >> 1,

meaning that z is approximately Gaussian. The p-th moment of the output of

nonlinearity g, conditioned on input signal value Sk is
B EE—— 2
p 1 n
g (s, +n.) = S~dn-————~———— exp(- —5— p _
k k (2“)1/2 o 2c,2 g (sk +n) =
n n
= ldx o(x) ¢°(s, + o.x) = 6 (5,.) (21)
k n“’ 7~ “p*7k’ °

where we used the Gaussian character of noise {nk} and (8). Accordingly,

the mean and variance of random variable z in (20) are

z E:Z W Gr(s)

k

3
n

il

oi zywi Var(g(sk + nk)> = % wi [Gz(sk) - Gl2(sk)‘_] , (22)

using the independent identically distributed property of noise {nk}.
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Then in a manner similar to (7), the detection and false alarm

probabilities are given approximately by

3 m, - T> m,- T
P = , p_ = , (23)
D o, F § %0

where T is the threshold, and the sub o designates setting the signal {sk}

to zero in (21) and (22). Upon elimination of threshold T, the receiver

operating characteristic is governed by the relation

PD=§< ii ) (24)

2 v [6y(s,) - 6 (0)]
(2 T o (S)]) (25)

is the appropriate deflection parameter in this case of a nonlinearly

where

distorted input channel. However, A is not a complete descriptor of
performance, since output z in (20) is not precisely Gaussian; however, for
large numbers of samples, K, the receiver operating characteristic furnished

by (24) should be a good approximation.

PROBABILITIES FOR CLIPPED-INPUT CORRELATOR

We now specialize the nonlinearity in figure 1 and (20) to the clipper of

(2). Then (21) yields the first two moments
10

\*x \dL

P v 4
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G](s) j\dx #(x) sgn(s + anx) = 2§(Z—) -1,

n

Gz(s) j.dx p(x) sgnz(s + onx) =1 . (26)

Substitution of these results in (22) then yields mean and variance

3

2 sl

K n n

3
I

Upon setting the signal {sk} to zero in (27), there follows
_ 2 2
my =0 , o5 = §wk . (28)
k

Utitization of (27) and (28) in (24) and (25) yields the results for the

clipped-input correlator, namely,

2ap)-

RS
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_ Approximation for Small Signal-to-Noise Ratio
"
ii If the input signal-to-noise ratio in figure 1 is small, that is,
o
e lskl
o << 1 for all k , (31)
7~ °n
s
-P\~
o there follows from (8), the approximation
)
2 A s
- @(—% o O D (32)
v o 2 o
e n n
"’\
‘a
Then (29) simplifies to
‘:‘;l Z
SR W, S
i 172 K7k L N1/2
a= (2 S AN (33)
- v 2 172 v '
o k
:3 the last relation following directly from (9). And since (30) now reduces to
‘ °zo/°z = 1, (24) shows that A now is the sole parameter describing the
-ﬁj receiver operating characteristic, under the assumptions of large K, number of
%:f samples, and small input signal-to-noise ratio.
e
:: Equation (33) reveals that the clipped-input system of fiqgure 1 is
o
ﬂﬁ- degraded relative to the linear system by
o
- d - 1/2
4 20 log § - 20 log(}) - 1.96 ¢8 (34)
-r:::
:; regardless of the particular signal {s& and regardless of the reference
of

iw;k employed. Thus, clipping the input to the correlator in figure 1

N 12
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causes a loss of 1.96 dB when K is large and the input signal-to-noise ratio

is small, no matter what signal and reference are used.

Matched Reference

The deflection parameter & in (33) is maximized by choosing a matched

k- A

1/2 1/2 1/2
2 L 2 - (2
m (‘Il) o Esk> - (ﬂ> dm ’ (35)

"\ k

reference, namely, w thereby yielding

>
[}

The last identity follows from (12). Again, the performance of the
clipped-input correlator depends only on the total received signal energy, and

not on its fractionalization into components {sk}.

Clipped Reference

For the clipped reference, with W = A sgn(sk) from (4), (33) reduces

to
172 172
_ /2 1 _ /2
Ar‘ - <w) 1/2 2 ‘Skl N (w) dr ' (36)
K %k .

the last relation following from (13). The loss relative to the linear-input
clipped-reference correlator is again 1.96 dB, since (35) and (36) are special

cases of (33) and (34).
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EXAMPLE

For the cosine signal already considered in (14), the deflection
parameters in (35) and (36) become

(1) (2)1/2(5>1/2 a (3)1/2 (1)
A = [ = d .
m ] 2 g " m

n

128

5.746 a/on for K

ol - ; (37)

[}
@

1.362 a/cn for K

see (16) and (17). The first line reveals a 1.96 dB loss relative to the.
Tinear-input correlator, both with matched references. The second line

indicates a loss -dependent on the particular number of samples, K.
GRAPHICAL RESULTS

In figure 2, the receiver operating characteristics (ROC) for the
1inear-input correlator, as given by (11), are drawn in dotted lines, for the
range (.001, .8) in false alarm probability and (.001, .999) in detection
probability. Superposed as the jagged solid lines are the results of two
simulations, each employing 30,000 tria]s*, for the linear-input correlator
with K = 128 samples and for the cosine signal example of (14). For case A,
a/cn = .5, whereas for case B, a/on = .25. Reference to (16) reveals that

these values correspond to deflections d&]) = 4 and d;]) = 2, respectively,

*A sample program is listed in the appendix.
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and in fact, the simulations overlay these d-values very closely in figure 2,
over the entire range shown. This agreement establishes the degree of

confidence to be expected in the simulation results to follow.

In figqure 3, the value of K is decreased to 8, while the values of a/cn
are increased by a factor of 4. According to (16), this results in precisely
the same d-values as above, and again, the simulations overlap the
corresponding analytic results, even for this small value of K, as they

should, since the correlator is linear. y

In figure 4, K is increased to 128, but the reference is now clipped.
According to the results in (17), we have

3.60 for a/cn

dil) - for K = 128 . (38) X
1.80 for a/cn .25

n
w

These values are borne out by the simulation for the cosine signal example in

figure 4.

When K is decreased to 8, (17) now yields

3

3.41  for a/o. = 2 :

(1) " h

dr = for K = 8 . (39) ;

1.7 for a/cn =1 .

The corresponding simulation results in figure 5 overlay these d values over n
the entire range plotted.

)

16 :

Y

’



P . b - ’ , .._a._ B I . ... — 1.-. e u..q‘.‘..... OO .\....- -1 “,JJJ‘.
el A A A TN N e R B e A SN NN NN S S e e O N gy O, S e ..............\....... i .__.. A

TR 7751
3

17
AR

.
N
7
, .
+—-
{ i
‘
t
i
1
+
4
i
s —
——————a
2
l
-
-~
-
K=8
e

inear,
Il

L

U TN 3 y g 3 o
o r/. . ..Mili!.i.llﬁ 4 - S U SR S ¥ +L ™

Fad o L R — e e SR & S TS IS DL =S S BRI SN SR D ’ 7 i- . d - e
. . . ., . ., - e [ .

{ . . . . . . PUN [ ‘. o

: - e T e S L S S f - i b4 T L

i n

/.
%
l
!
ROC for Baseband,

SEE (S S—

.02

. ., ™ .
; A u N - PR S [
F. 1 AAH.[ (/ )
) - —+ —— —t =t A e -— — .
. ¥ 6 /na Y. . — L .
K, d -~ b —_— -~ - S S (@] al
- o o© un o [e o] n o] @D ~ w [Ip] < (9] o — wn o — ) o ~© ‘v
B o o0 2] [e2) [ep) [s2) . . (@] o O o o O 4,
§ a R m . . . (@] o O |
- N -ul.
: U0130833(] 40 A31{1QRQOJ s




> . pa. .
e e W aCyVaVa

—t
!
vd
4
|
§
]
r.
T
|
t
i
|
;
|
i
t
'
{
I
i
+
1
-
|
!
N
e

. 1 . . L . .
Tit; s T R UL S B e e R TR VU SV SRV NS S N Wooe -
3 N 3 17 ‘
: I ] K . - v o -

- - - T —t -t

ity of

7
|
0S

/
B
Probaki

3
.0l
ROC for Baseband, Clip Reference, K=1¢8

8§88
998
.895
.98
g8
.95
05
02
01
00S
coe2
C1
Figure 4.

uo1399813( 40 A31]19RQodd

TR 7751

18

....... o "0 g e n & SRORAPCN L LA v Tt e [ Sy NS “ ey « LY 7.......-;




~
w
~
~
o
[

s
3
N

0!

“id=

.999

.998 |-

.995
.98
.98
.95

uo1130913(] $0 Ay1|1gRQodd

.05 F

8

19

.05

.02
Probability of False Slarm

ROC for Baseband, Clip Reference, K

.C1

.001

.02

.0l
Figure 5.

.00t L=

p}
O
(@]

.CC2



. '- - " ’l

TR 7757

When the input is clipped, instead of the reference which is matched
according to (35), the pertinent equation is the upper line of (37). There

follows

[}
w

3.19 for a/an

A;1) = for K = 128 . (40)
1.60 for a/on .25

Figure 6 correlates these values very well.

If K is decreased to 8, while a/on is increased to 2 and 1,
respectively, the same values result from the use of (37), as given in (40).
The simulation results in figure 7 reveal that the actual performance does not
meet those deflection values 3.19 and 1.60, except at the upper right ends of
the curves. Two obvious reasons for the discrepancy are that K = 8 is not
large enough to rely on the Gaussian approximation, and the input
signal-to-noise ratios, a/cn = 2 or 1, are not small, as assumed in (37)

et seq.

In an effort to circumvent the small input signal-to-noise ratio
assumption made in (31), we returned to the more general results (29) and (30)
and employed them in receiver operating characteristic (24). The values

As were

calculated for the matchea reference wk K

4.932 for a/cn 2

A = for X = 8 ,
1.785 for a/on

"
—

2.298 for a/o_ = 2
%o n
Lo . for K = 8 . (41)
%; 1.258 for a/oh =1
20
. - . L
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These results are superposed in figure 7 with the label (24, 29, 30), and are
seen to be poorer than those obtained via the low input signal-to-noise ratio

results. However, this is felt to be a fortuitous circumstance.

When both the input and the reference are clipped, the simulation results

for K = 128 are displayed in figure 8. The corresponding theory is furnished

by (36) and yields the results for A( ) already listed in (37). They
become
2.8173 for a/e_ = .5
(1) n
Ar = for K = 128 , (42)
1.436 for a/cn = .25

in excellent agreement with figure 8.

For the alternative situation with K = 8 and a/on =2 or 1, the

appropriate values follow from (37) as

0
a8 ]

2.724 for a/cn

o1 for K = 8 . (43)
r 1.362 for a/a,

"
)

These values do not furnish a good approximation to the corresponding
simulation results depicted in figure 9, except at the upper right end.
However, when we resort to the more accurate approach of (24), (29), (30), as
discussed above, agreement is considerably better, although the slopes of the
theoretical curves are steeper than those of the actual simulation results. A

similar situation occurred in figure 7, although considerably worse there,

23
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NARROWBAND CORRELATOR

In this section, the correlator input and local reference are complex
sampled processes, corresponding to the in-phase and quadrature components of
the narrowband processes; see figure 10. The double arrows denote a pair of
samples, as for the complex envelope of a narrowband process. It is presumed
that any time delays or frequency shifts of the input signal have been
compensated for, and we concentrate on the effects of clipping, at various

locations, on the receiver operating characteristics of the correlator.

Kk
X | v w*v K z i % Y
k k o Kk o | |
. XX 22:)“21 —
) k=1 | ;
Input Nonlinearity Reference Accumulator Magnitude
Figure 10. Narrowband Correlator
SYSTEM DESCRIPTION
The input to the correlator in figure 10 is
N for HO
Xy = . (44)
Sk exp(ie) + U for H]

where ﬁk}is a deterministic known complex waveform, and & is a random
variable. The phase shift ® is independent of k; that is, the phase shift is

constant but unknown over the observation interval K.
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Additive noise {n& is complex (circularly-symmetric) Gaussian with

independent identically distributed components:

nk =0 for all k ,
nk"m =0
for all k, m .
X 4
""m = <n 6kwj (45)

In particular, this means that lnklz = 20§.

Expressing the noise in terms of its real and imaginary parts,

ne =N+ i s (46)
(45) yields the properties
or ey = 0
nkrnki =0 for all k ,
nkrnmr = nkinmi = nkrnmi =0 for ail k = m . (47)

Thus, oi is the variance of each component of the received noise {nk}.

28
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The nonlinearity g in figure 10 is as given earlier in (2). However,
since there are both in-phase and quadrature channels input to the

nonlinearity, namely, x _ and x its output is also complex:

kr ki’

Y=v, +1iv . (48)

= 9(x )+ 1 glx kr Ki

Yk ki
Thus, two nonlinearities are employed, one for each channel. When g is the
clipper given by (2), output vk takes on one of the four values + 1 + i, a
2-bit representation.

Local reference {wg} is also complex deterministic and directly related
to the signal. Two examples are

As for linear reference
w = . (49)

A sgn(skr) + 1 sgn(ski) for clipped reference

Again, two clippers are required in the reference channel, one for each

component. This also results in a 2-bit representation for the reference.
Complex scale factor A is irrelevant to the performance of the narrowband
correlator.

*
The multiplier output in figure 10 is given by WV that is, a

k;
conjugate is applied to the local reference. This complex gquantity is summed

over the observation interval of length K, yielding complex output

K
it *
Z = :2: wkvk = zr L Zi . (50)
k=1
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Finally, the magnitude of this quantity,

172
s 2,2
Y-(Zl-(lr+zi> : (51)

is compared with a threshold for decision about signal absence (HO) or

presence (H])‘
PROBABILITIES FOR LINEAR-INPUT CHANNEL

In this subsection, we presume that the nonlinearity ¢ in the input
channel of figure 10 is absent; that is, from (2) and (48), vk = Xy Then

accumulator output z in (50) becomes, for signal present,

* * * . N
z = E WV, = 2 W X, = 2 wk('sk exp(ie) + nk) =S &N, (52)

k k Kk

where
* *
S = exp(i8) > ws, . N= > wn . (53)
K k

[t should be observed that complex signal waveform {sk} and local reference
{wk} are completely general at this point. That is, we have not restricted

consideration to the examples given in (49) yet.

30
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For a given fixed @, random variable z in (52) is complex Gaussian, since
the operation of summation is linear in the noise variables {nk}. We will o
find the probability of detection conditioned on a fixed value of 8. The phs

complex random variable N in (53) is Gaussian with moments A

Z|
]
£
x %
= |
»x
[
o
[

_2- * X 0 -
N~ = wkwm nkn . :?
km -
4
2 E * * 2 2 _ .2 -
IN] € = W nono= 20 2 l"’kl = 2, . (54)
km k o
;:
Here we used the noise properties listed in (45). The statistics given in T
(54) hold true whether signal is present or not at the correlator input. .
A
If we let N be expressed in terms of its real and imaginary parts, ::
. i
N=N + 131N, , (55) e
r i o
.:-:\1
the results of (54) translate into ,w!
. T
N =N. =0, U
r i o]
vl
_ _—5 _ _—2. _ 2 :"I
NrNi =0, Nr = Ny = oy - (56) N
-
Therefore, we can write the joint probability density function of the real and :?;
-"5
RS
imaginary parts of z in (52) as ®
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(e -5+ (- 5)
202 '

2 -1
p(zr,zi) = (2ch> exp |-~

(57)
N
for signal present.
The detection probability, for threshold T, is given by
2 ) 1/2
PD = Prob(y > T) = Prob (zr + z1.> >T]= dzr dzi p(zr,zi) =
>T
o\ zi + 21? - Z(Srzr + Sizi) + ]SI2
= <2woN> dzr dzi exp (- ) >
T N
o0
7 2 2
= (2#)-] § de » Sdo exp[— g—'+ P—(Sr cosg + S1. sing) + J—S-z—' =
°N 20
T/0 - N
n
0
1, 2 2
= de p exp |- E(p +d7) Io(dp) = Q(d, T/GN) ) (58)
T/oN
where we used in order: (51), (57), the substitution
Zr = °N p COSP , z1. = GN p Sing , (59)

(1; 8.437 3], and Marcum's Q-function [2; (1) for M = 1]. The parameter

introduced in (58), namely,

d= = (60)

32
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is the analogue here, in the narrowband correlator, to the quantity (9)

defined for the baseband correlator; we made use of (53) and (54) in (60).

s

"l'll"‘ ll
NN

. a

r v

Although the derivation in (54)-(58) was conditioned on a specific fixed
value of 8, the end result in (58) and (60) depends only on }Sl which is
independent of @. Therefore, the detection probability of the narrowband

correlator is independent of whatever © is, and (58) is also the unconditional

detection probability, there being no need to average over @; its exact

probability density function is irrelevant.

The false alarm probability is obtained from (58) and (60) by setting the

signal {sg} to zero, and using [2, (2)]:

PF = Q(0, T/oN) = exp/(- L . (61)

Eliminating T/oN from (58) and (61), we obtain the operating characteristic

in the form .

PD = O@, (-24n PF)]/2> . (62)

Thus, deflection parameter d in (60) is a complete descriptor of performance

for the linear-input narrowband correlator in figure 10. Ffurthermore, signal :if

{5?& and local reference {wk} are completely general in (60).

...............
..................................
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Matched Reference

If the local reference is matched to the received signal, then
wk = Ask as in (49), and (60) yields for the matched deflection parameter

the value

“n

172 1/2
1 2 _(2E .
o (Epld) 2l
n K
where £ is the energy of the received real signal. Furthermore, this is the
maximum possible value of d in (60) by choice of local reference {w?}.
Thus, the optimum performance of the linear-input narrowband correlator

depends on the total received signal energy, and not on its fractionalization

into individual components {sg§.

Clipped Reference

Since (60) and (62) hold for any reference, we can specialize it to the

clipped case given in (49), namely,
we = Afsan(s, ) + i sgn(ski)] . (64)

Substitution in (60) yields

|
P

dr - 0;1(2K51/2 zg [an(skr) - Sgn(skii}[;kr + 1 Skijl . (65)
k

This quantity depends on the specific fractionalization of the received signal

enerqgy into components and is, therefore, example-dependent. Its maximum

2
!

/

value 15 again (2E)]/%/En as in (63), but only if all components {Sk
are the same complex constant. The degradation of dr relative to dm

34
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depends on the specific signal {sk}. We will consider two particular signal

examples in the rest of this section on the narrowband correlator.

EXAMPLES
Example 1, Phase-modulated tone:

S =@ exp(iak). 8, = 2vk/K for 1 < k < K; a>o0. (66)

Example 2, Pure tone:

sk = a exp(ip) for 1

A
Vo
IA
z

a>ao, ® constant ., (67)

For these two examples, the values of the matched deflection parameter in

(63) become, respectively,

(1) _ (2) _ /2 a
dm = dm = K o . (68)

On the other hand, for a clipped reference, (65) yields the corresponding

values
10.187 a/s for K = 128
n

S
r 2.613 alo_ for K = 8

172
gl e e for all K . (69)
r On

Since d in (60) and (62) is a complete descriptor of performance for the
linear-input narrowband correlator, it is seen that for the phase -modulated

tone of example 1, the clipped reference requires

35
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d{"\ (20 10g(10.187//T28) = .91 8 for k = 128
-20 log|[—F= | =
a{V] |20 10g(2.613/VF) = .69 dB for K - 8

additional input signal-to-noise ratio relative to the matched reference. On
the other hand, the pure tone signal example 2 requires a 0 dB difference, as
seen by reference to (68) and (69). 1In general, (63) and (65) reveal a dB
difference, due to clipping the reference, of

2 lsklz

k

> Lsantsyp) - 1 sants ][5y + Ski]lz
k

10 logf2kK (70)

MOMENTS FOR NONLINEAR INPUT CHANNEL

In this subsection, the nonlinearity g in the input channel of figure 10
is present; that is, Vi is given by (48) in terms of two nonlinearities, one
each in the in-phase and quadrature channels. For a general nonlinearity g,
the accumulator output is

zZ = E w:vk = 2 w:@(xkr) + i g(xki)] . (71)

k k
where input

X, = S

K exp(i®) + n_. = t +n_ . (12)

k k = 'k k
Signal gsk} and reference Zwk'} are also general at this point.
Random variable & is held fixed for the moment. Substituting (72) in (71),

there follows
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*
zZ = :E wk[;g(tkr + nkr) + i g(tki + nki{] . (73)
k

We now assume that K, the number of samples accumulated, is large, so
that z is well approximated as a complex Gaussian random variable. In that
case, we can concentrate on the two lowest-order moments of z. The p-~th

moment of the real output of one of the nonlinearities is

—_— 2
1
Pty + 0y = Jdn 17— exp[= ~5 | (. +n) =
(2n) a 20
n n
_ p _
= S~dx p(x) g (tkr + onx) = Gp(tkr) . (74)

where we used the Gaussian character of the noise, (47), and (8). 1In a

similar manner,

p =
Plteq + npd = 6(E) (75)
The mean of complex random variable z in (73) then follows easily as
—_ * .
mo=Z=ow [G](tkr) ‘i G1(tki)] . (76)

k

To determine the second central moments of z, we combine (73) and (76) in

the form

z-2= > (a +B), (1)
k

A
)

]

2L
LN

[d

P R
L I
e

PN
]

N 'y

4
k)

L

R
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*
@ ”k[‘-‘(tkr AL B Gl(tkr)] '

. *
, B = 1 W [9(tg + np) - 6 (ty )] - (78)

k
and independent of every Bm for a1l m. A similar property holds for every

From (47), every random variable « is independent of every « for m = k,

random variable Bk. In addition, 'cTI: = B_k' = 0. It then follows that

(Z'z)2=§(“k+ﬂk)(°m+8m)=§ :E—J'g}
km k
" - Z w;‘z[ez(tkr) - Gf(tkr) - 6,(t, ;) + Gf(tki)] :
N k
lZ - EIZ = Z (ak + Bk)(c:r: + B;) = 2(}0.‘('[2 + [Bk[2> =
km k

[}

2 lwklz[GZ(tkr) B Gf(tkr) +Bp(tyy) - Gf(tki)] - 09
k

PROBABILITIES FOR CLIPPED-INPUT CORRELATOR

We now specialize these results to the case of the clipper g(x) = sgn(x).

Then (74) yields

G](t) = fdx #(x) sgn(t + onx) = ZQ(t/cn) -1,
2
Gz(t) = !.dx g(x) sgn (t + cnx) = 1. (80)
38
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o

NG

o
We further restrict attention to the case of small input signal-to-noise :-_f{
ratio in figure 10, that is, -.:,::
.A\

Skl ..

<< 1 for all k , (81) A

g b

n e
in which case (80) yields, with the help of (32), ;
172 t 172 t, .
~ .2. _ﬂ > _2. __J. '-:‘_'.
61(tkr‘) = (11) a_ ! G](tki) - («) o (82) N

n n o

::1.

."n

Utilization of these approximations in (76) yields mean a
172 t, o+t . 172 . S

- [2 * _kr k1 [2 exp(ie) * O

m, = (ﬂ) z Wk o B (1r> o Z WSk (83) re
) n n

k k

.'_:.
where we used (72). o
Similarly, (79) reduces to j_

t2 _ t2 S2 e
=2 _ 2 *2 ki kr _ 2 *2 Tk i2e8 BN

(z - 2) —ﬂ§wk 02 = nEwk Recze ) ::f"::
k n k n .-:.:
) ) . R
A E— t + t, . Is f @

s (A 12, 2 ke ki 2, _ 2 Lk ' -

|z zl = Z lwk\ 2 - = 2 = Z l”kl [2 W2 (84)

k n k n -

By the small input signal-to-noise ratio assumption in (81), it can be seen ;,';::
that the magnitude of (z - Z) in (84) is much smaller than Iz - ?]2. In _".-f:
NSRS

this case, we have the good approximations e
A
N
. @

39
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. (z-2) =20,

|z - Z|? (85)

IR
~N
x

=
N

"
N
Q

Observe, that to this order of approximation, all dependence of these moments

on signal fsk} has disappeared.

Thus, for signal present, the joint probability density function of the

real and imaginary parts of z in (71) is

2
; -] (z_-m_) + (z, -m_.)
- p(z,.2;) = <%wo§) exp |- ——H——L 2|, (86)

202

Then in an identical manner to that developed in (58), the detection

probability is, for threshold T,

2 5 1/2
D Prob(y > T) = Prob Gr + Zi) > T =

P. =
= 08, T/o,) . (87)
where
Z *
W, S
lm [ 1/2 k'k
_ P4 2 k
L 172 (88)
z :E; 2
°n (l lwkl >
k
) 40
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Notice that random variable ®, which was present in (72) and (83), has now

disappeared in A and detection probability P Also A is precisely equal to

0
d in (60) except for a scale factor of (2/«)]/2. Thus, the clipped-input

correlator is degraded relative to the linear-input correlator by 1.96 dB,

measured at the system inputs, reqardless of the signa) {sk} and reference

fw]-

If we set the signal to zero in (87) and (88), we obtain false alarm

probability

P. = 0Q(0, T/a_) = exp|- ), (89)
F Z 202
z

where o, is the common variable defined in (85) and used in (86)-(88).
Eliminating threshold T from (87) and (89), we obtain the receiver operating

characteristic as

. ) 172
Py = 0<§, (-24n Pp) ) : (90)

The parameter A defined in (88) is a good descriptor of performance when the

assumptions of large K and small input signal-to-noise ratio are met.

Matched Reference

The deflection parameter a in (88) is maximized by choosing a matched

reference, that is, W = Ask,

1/2 1/2
_[2 | 12 _ (2
"n <) 2ol Tw e

n

thereby yielding

.............................
.........

''''''''''''''''
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The last relation follows upon reference to (63). It is seen that the
performance of the clipped-input narrowband correlator depends only on the

total received signal energy in this case.

Clipped Reference

For the clipped reference, we again make the choice delineated in (64).

The result for the corresponding value of deflection parameter A in (88) is

5 1/2
8, = (;) dr , (92)

where dr is given by (65). Thus, the degradation of Ar’ relative to
matched value Am above, depends on the specific choice of signal waveform

selected.
EXAMPLE

For the phase-modulated tone presented in (66), (91) yields

1/2 /2 (1)
SRR

n o L
n

a 1.96 dB degradation relative to the linear-input narrowband correlator with

a matched reference. On the other hand, (92) and (69) yield

8.128 a/cn for K = 128
KU

r

Il
@

2.085 a/cn for X

giving a loss that depends on the particular number of samples, K.

42
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GRAPHICAL RESULTS

In figure 11, the receiver operating characteristics (ROC) for the
linear-input narrowband correlator, as governed by (62), are drawn in dotted
lines, for the range (.001, .8) in false alarm probability and (.001, .899) in
detection probability. These are no longer parallel straight lines, as they
were for the baseband single-channel case in figures 1-9, but bend downward as

the false alarm probability increases (that is, as the threshold decreases).

Superposed as the jagged solid lines are the results of two simulations,
*
each employing 30,000 trials , for the linear-input narrowband correlator
with K = 128 samples and for the phase-modulated tone example of (66). For

case A, a/on = Y274, whereas for case B, a/cn = ¥2/8. These values were

(1)

m = 4 and

chosen so that the deflections would take on the values d
d;]) = 2, respectively, as may be seen by reference to (68). The overlay

of simulation and theory is excellent in figure 11 over the entire range of
probabilities plotted, and establish the degree of confidence to be expected

in the simulation results to follow.

In figure 12, K is reduced to 8, while the values of a/on are increased
by a factor of 4, thereby realizing the same d-values as above, according to
(68). The agreement of results is again very good, except for the upper end

of the a/on - 42 curve, where the simulation result is low. This particular

*A sample program is listed in the appendix.
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simulation is atypical; a re-run with a different set of 30,000 independent
trials yielded good agreement over the entire range plotted. However, it does
serve to illustrate a pitfall of simulation results, even when based on 30,000
trials, as these results are; it is possible to get a systematic error in the
recejver operating characteristic, especially on the tails of the

distributions.

In figure 13, K is increased back to 128, but the reference is now

clipped. According to (69), we now have

() 3.60 for a/o V2/4
d.'’ = n for K = 128 , (95)
1.80 for a/a ¥2/8

which values are borne out hy the simulation results in figure 13.

When K is decreased to 8, (69) now yields

) 3.70 for a/o_ A
d. = for K = 8 . (96)
1.85 for a/s 12

These results are confirmed by the plots in figure 14.

When the input to the narrowband correlator is clipped, instead of the
reference (which is matched according to (91})), the pertinent equation is

(93). There follows

b, Y for K - 128 | (97)

19 f - Y74
) {5 19 for ass - [2/4
1.60 for a/a_ - Y2/8

Figure 15 corroborates these predictions.
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When K is decreased to 8, while a/an is increased by a factor of 4, the
same values result from the use of (93), as given in (97). The simulation
results in figure 16 reveal that the actual performance of the narrowband
correlator does not meet these deflection values 3.19 and 1.60, except at the
upper right end of the curves. The reasons for the discrepancy are two-fold:
K = 8 is not large enough to rely on the Gaussian approximation, and input
signal-to-noise ratios, a/on = Y2 and 1/y2, are not small, as assumed in

(81) et seq.

When both the input and the reference are clipped, the simulation results

for K = 128 are displayed in figure 17. The corresponding theory is furnished

, by (92) and (65), and yields the results for Ail)

(94). They become

already listed in

) 2.87 for a/a Y274
A = for K = 128 , (98)

; r 1.44 for a/o = Y2/8

and are in excellent agreement with the simulations in figure 17.

For the alternative situation with K = 8, the appropriate values follow

from (94) as

) 2.95 for a/a = 'R
Ar = — for K = 8 . (99)
1.47 for a/cn 1/y2 J

These values furnish a good approximation to the simulation results in
figure 18 at the upper right end, but are optimistic over the rest of the
range. The reasons for the discrepancy are again that K is not large and the

input signal-to-noise ratio, a/cn, is not small.

50



TR 1151

AN L Y

i) N Y % AL v o o - ® i e ® oy

...-.. h .--.n- --.- S ..-.- " ....-l.......-n. (YA R M P . --... ........ -\.. l--n‘1-‘\!. Ay --‘-\--\ C .... ..~-<u. st N

PRI R AL AT A AR A R A I PRSP VRN P PO T e e 0 A A N A R Y
-IQ
.
'
Y]
.
hw
Sy
f
‘s
L §

8

.5
m

. ] \

NG N T L =

L B ..ﬁiiv.w-lli.t..m.f.. e e .h,......mu....‘ .- e —= ﬁ - - . T w JW;L“ ~
-

v
i
A:
B

—+

V%
7
|
3
A

///

L2 g

| ///44". ol
%
|
[
2

lze

. Pu

&'y
KN aE

\ N K

. \ o
+ : N L
. -—

ROC for Narrowband, Clip Input, K

a4
A
Probapoility of Fa!

W w T e
._*._-.

.

ot

ﬁ/
2
|
01
16

A IV N

6
/

.939
.998 |-

985
98
.98
8s
.05 ,
.02/// -l
01 '
005
.002
001
C01
Figure

Uo130833( $0 A1l |1Qgeqgody

e,

‘-"w'c
(™l ™

N

~




TR 11517

b

R

P U

e e ,.Tlr.lf“%l( -

N WP WS —

U W

e
R

- e =
-—

o

.338 T
.998 &

.985

Uo1390933(] 40 AjLlarqoudy

.05

.02

.01

128

Figure 17. ROC for Narrowband, Clip Both, K

52

s .
v oy

B

PR T e T
AN

A

o \-’ \'-"v

CAY

" a
-

~ e
A I

e
Ce el



TR 7751

——
.

NN vy @ el AR Ml MOENDENE DR SO 1N TRASN @@
..... .......\.r\. ..-.. A e Lt e o .\.. A A g A ..... ..\ P AT N N

8
K=8
53

\ r

o F ~ LN
" w

a,(‘h o~ =

o e

|
—_——

i
|
1
i
i
—
A
)
Clip Boin,

Y

»
l
.05

1

ROC for Narrowband,

/’
T
|
|
.02
Probab

5
.
/]
A
|
01

18.

.998

f
r
.00!
Figure

@ n 2] [o 2} N o] @® ~~ w wn Aol ™ o - n o — ) N
2] 2] [e2] [e2] [o2] . . o o o o o O
(22} e 2] . . O o O

uo130338(] $0 A3L{lqgeqody




TR 7751

The final result in figure 19 is identical to the conditions of figure
17, except that now, the quadrature component of the clipped reference
channels was suppressed; that is, only one real reference was used for
multiplication in figure 10. The simulation results in figure 19 indicate
A:]) values of approximately 2.6 and 1.3; these values are approximately
.9 dB poorer than (98) which pertained to figure 17. Thus, dropping one of

the clipped reference channels causes a loss of almost 1 dB, and should be

avoided.
54
T A e e e

.-t



TR 7751

. O ’ P @ ” TRl \OIREONe * AAOMMAOOME ) il OO o ik X el us
P -\M.-a. [ --<~\.-\-cuf.£ Av.,...v. .~.—... - k ' . -.../ A VAP ‘ R -. Lt SEURVRRNEE RS .r. s .J.. ’ ’
o
[9¥)
-
It
X o v
S =4
.~ m
e e . . . o
ro ¥ 1 U S B 4 1 ; . oo v wo
I I T Co ) S ! ' ! i ; ' {
. i i Co : I ;- ! | ' ; : : j ; O o
. ' . . , : : \ , w
| m P o - ! | . ) _ | ; , - & <
19 . B b Cay e R R “ oy - H ¥ .- . ¢- H t I . . 4+ Q o
| ' A i _ R ! | | | _ ! Jed - P
M /, | : Lo i ., i ,\1~4 718 H o Q et
L t S .- SR SRS NS RO R { + S : oo G4
- j I \ .ﬁn i ! : " ! -
. . , N 1 . ; ! < .
) N . o P A
#. - 2ot ._ h ,,,,, 4+ F e Sle . ¢ 9 t: x N
_ . . i - - ' -
| . | << ¢ P g
| rL [ . _e “ T C -
h R T
A . O
i . i "
e -k T Q- :
m : [ - M...
Lo i " O
boon g S G a .
! _ | ¢ Ta.
- -
! "
. , Lo - ©
S R S~
- ‘IM_. el i 4— — \.“ m
| \,v 0
i ! 3
! O
: L
%
[1e}
Z
.
(@]
G
)
O
o4
(8p]
-—

]
|
|
[RVp]

R e e N

! | P “

R

. ' | i ol R
. %ltﬂ S ST ,
R J , s
. " : : EERNEL | ol @
S W N O S O
. \ v . /f ..4. - kl M - . ..\..“
R T ] ] s : N o I
b T ) /.. - / R - ~ X ..A
\o * : . 3 SO TR A B S "
. . . . . oo T
- e s Gea b - — - l».l....l:lL A.-\u
| ] | N S BT G "
TS G G - : SRS SN U - AN ~ NV LN S S “ o
) n o v ™ @© ~ ® 1 T ™ o - n N u o = Ja
o o O o n i) . . . . . . . . . o o O QO Ta
N D o) . . . . . R ¥ <O 8 o,
° . . . . . [ .\~.L
3 .\.\A
(@] e

La

UoL390933(] +0 A31]1Qqeqoudd




Sl Yl by el el " . vTTTITY S 4 g pav g
AR RS TN A A D B NS B Rl » o L. N oY N N A Vam

TR 7151
DISCUSSION/SUMMARY

Accurate prediction of performance of the baseband and narrowband
correlators, with clipping at the input and/or reference levels, is possible
over a wide range of number of input samples, input signal-to-noise ratio, and
detection and false alarm probabilities. Only when K, the number of samples,
gets too small to use the central 1imit theorem, does the theory begin to
deviate from actual performance. However, it is precisely in this case that
simulation is most attractive, since a large number of trials can then be
conducted in a reasonable amount of time. Programs are furnished in the
appendix, for both the baseband as well as the narrowband correlator, that
enable extension of the simulation results to other cases of interest to the

user.

If we compare corresponding results in the baseband and narrowband
correlators, that is, fiqure 2 with fiqure 11, figure 3 with figure 12, etc.,
the predicted and simulation results for the deflections are identical, with
one exception. Namely, when the reference is clipped and K is small, the
narrowband deflections are slightly larger than the corresponding values for
the baseband correlator; compare figure 5 with figure 14, and compare figure 9
with fiqure 18. Thus, the degradation suffered in the case of a narrowband
correlator is not gquite as bad as for the baseband correlator in these

particular cases.
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ARENDIX

PROGRAMS

The first program listed in this appendix pertains to the baseband
correlator of figure 1, with both the input and reference clipped; see lines
320-350. If clipping is desired removed, merely delete SGN from the
appropriate lines. This program is written in BASIC for the Hewlett-Packard

9000 computer; the qualifier DOUBLE in 1ine 60 denotes INTEGER variables.

The second program pertains to the narrowband correlator depicted in

figure 10, with both the input and reference clipped; see lines 370-400. If

clipping is desired removed, delete the appropriate SGN aperations.
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